
A Framework for Comparative Evaluation
of High-Performance Virtualized

Networking Mechanisms

Gabriele Ara1(B) , Leonardo Lai1 , Tommaso Cucinotta1 , Luca Abeni1 ,
and Carlo Vitucci2

1 Scuola Superiore Sant’Anna, Pisa, Italy
{gabriele.ara,leonardo.lai,tommaso.cucinotta,luca.abeni}@santannapisa.it

2 Ericsson, Stockholm, Sweden
carlo.vitucci@ericsson.com

Abstract. This paper presents an extension to a software framework
designed to evaluate the efficiency of different software and hardware-
accelerated virtual switches, each commonly adopted on Linux to provide
virtual network connectivity to containers in high-performance scenar-
ios, like in Network Function Virtualization (NFV). We present results
from the use of our tools, showing the performance of multiple high-
performance networking frameworks on a specific platform, comparing
the collected data for various key metrics, namely throughput, latency
and scalability, with respect to the required computational power.

Keywords: Kernel bypass · DPDK · Netmap · NFV · Containers ·
Cloud computing

1 Introduction

Over the last decade, many applications shifted from centralized approaches to
distributed computing paradigms, thanks to the widespread availability of high-
speed Internet connections. As a result, cloud computing services experienced
a stable growth in the past few years, both in sheer size and the number of
services provided to their end-users. Their success is mostly due to their high
level of flexibility in resource management, especially for those applications that
may be subject to significant service demand variations over time.

Cloud systems also gained the interest of network operators, intending to
replace traditional physical networking infrastructures with more flexible cloud-
based systems. To achieve this goal, highly specialized networking devices will
be progressively replaced with equivalent software-based implementations that
can be dynamically instantiated and relocated inside a cloud-based infrastruc-
ture, called Virtualized Network Functions (VNFs). This approach represents
the core idea behind Network Function Virtualization (NFV), which has gained
popularity in recent years. Given the nature of the services usually deployed in
c© Springer Nature Switzerland AG 2021
D. Ferguson et al. (Eds.): CLOSER 2020, CCIS 1399, pp. 59–83, 2021.
https://doi.org/10.1007/978-3-030-72369-9_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-72369-9_3&domain=pdf
http://orcid.org/0000-0001-5663-4713
http://orcid.org/0000-0003-2219-0557
http://orcid.org/0000-0002-0362-0657
http://orcid.org/0000-0002-7080-9601
https://doi.org/10.1007/978-3-030-72369-9_3


60 G. Ara et al.

NFV infrastructures, these systems must be characterized by high performance
in terms of throughput and latency among VNFs. These services are typically
deployed in long service chains; for this reason, it is imperative to maintain
the cost of individual components interactions as small as possible, to avoid
high end-to-end costs across the whole chain. These requirements are so tight
that the NFV industry is now considering Operating System (OS) containers to
deploy VNFs in cloud infrastructures, rather than traditional Virtual Machines
(VMs), following the rise of popularity of container solutions like LXC or Docker.
These solutions exhibit similar performance as deploying VNF applications
directly on the host OS [7,9], by partially sacrificing isolation among virtualized
components.

Thanks to containers’ superior performance, the research focus is now into
further reducing communication overheads. Many high-performance I/O frame-
works have been developed in the past decade to reduce by several orders of
magnitude the cost for user-space application to send and receive packets with
respect to traditional networking stacks.

1.1 Contributions

This paper shows the characteristics of a benchmarking framework for com-
paring system performance when adopting high-performance I/O solutions to
interconnect VNF components deployed in a private cloud infrastructure using
OS containers. In particular, this tool eases the creation of a virtual network
infrastructure using software-based networking solutions or even leveraging spe-
cial features in network devices that support the Single-Root I/O Virtualization
(SR-IOV) specification. It can then be used to deploy on that infrastructure a set
of benchmarking applications that measure system performance under various
working conditions. We present experimental results collected using this frame-
work and compare the performance of various virtual switching solutions (either
software-based or hardware-accelerated) when subject to synthetic workloads.

This work constitutes an extended version of the paper already appeared
in [4]. Details on this will follow at the end of Sect. 5.

2 Background

Application components or services deployed in OS containers inside a cloud
infrastructure can choose among several network primitives to communicate with
each other or with the external world. Usually, these primitives use network vir-
tualization techniques to provide a set of gateways to exchange data over a vir-
tual network infrastructure. Choosing the right communication primitives to use
when connecting multiple encapsulated components may significantly impact the
overall application performance and latency, but some of them require a special
set-up from the infrastructure provider that limits the flexibility in deployment
typical of cloud environments.



A Framework for Comparative Evaluation 61

In this work, we focus on the following solutions: (i) kernel-based network-
ing, (ii) kernel-based networking with network stack bypass (e.g. Netmap), (iii)
software-based user-space networking, (iv) hardware-accelerated user-space net-
working. In the following, we summarize the main characteristics of each of these
techniques when adopted in NFV scenarios to interconnect OS containers within
a private cloud infrastructure. We will focus on the performance attained when
adopting each solution on general-purpose computing machines running Linux.

2.1 Kernel-Based Networking and VNFs

Most operating systems, including Linux, provide abstractions that can be used
to create and assign virtual Ethernet ports to VMs or OS containers. Each virtual
port has no corresponding hardware interface; they are purely implemented in
software as endpoints for networked communications within the same host by
emulating the behavior of real Ethernet ports. Typically, these virtual ports are
created as directly connected pairs: this means that each port in the pair is
always directly connected with the other one as if connected by a virtual cable.

Using standard techniques provided by the Linux kernel, containers or other
virtualized environments can be interconnected by assigning one end of the vir-
tual Ethernet pair each. This operation usually hides the selected port from the
host networking devices1, allowing applications in the VM or container to send
packets to the virtual port on the other end of the connection.

Fig. 1. Different approaches to inter-container networking. Adapted from [4].

To connect more than two virtualized environments to the virtual network or
to connect a VM or container to the actual physical Network Interface Controller
(NIC), a virtual implementation of a L2 switch is required, to forward packets

1 OS containers in Linux achieve isolation employing cgroups and namespaces. With
these tools, virtual Ethernet ports assigned to a container will no longer be visible
or accessible outside the assigned cgroup/namespace, but it will still be part of the
host network stack. In this sense, OS containers do not introduce any overhead when
encapsulated applications exchange packets over the virtual network.



62 G. Ara et al.

from each virtualized environment to the desired destination, be it another vir-
tual port or the outside world. For this purpose, the Linux kernel implements a
virtual switch called “linux-bridge”. It allows VNFs to communicate on the same
host with other containerized VNFs or with other hosts via forwarding through
actual Ethernet ports present on the machine, as shown in Fig. 1a.

Virtual Ethernet ports can be accessed via blocking or nonblocking system
calls, for example using the standard POSIX Socket API, exchanging packets via
send() and recv() (or their more general forms sendmsg() and recvmsg()).
With this approach, at least two system calls are required to exchange each UDP
datagram over the virtual network; therefore, overheads grow proportionally with
the number of packets exchanged. In addition, each packet traverses various
network stack layers in the Linux kernel, to be properly processed and delivered.

The recent introduction of batch system calls in the kernel API enables
partial amortization of the cost of a system call over a burst of packets. The
sendmmsg()/ recvmmsg() system calls handle multiple packets in a single call,
reducing the number of system calls required to exchange huge traffic volumes.
However, this only reduces the ratio between the number of packets and the
number of system calls needed to exchange each packet over the local virtual
network, but packets still need to traverse the whole kernel network stack, going
through additional copies, even when transmitted locally on a machine.

2.2 Bypassing the Kernel’s Networking Stack

Several solutions can be adopted inside the Linux kernel to bypass (entirely
or partially) the standard networking stack, in favor of more efficient pipelines
designed for high-performance data plane operations.

The most straightforward solution is to partially bypass the networking stack
using raw sockets instead of regular UDP sockets and implementing networking
and transport-level encapsulation in user-space. This approach is often taken
in combination with zero-copy APIs and memory-mapped I/O to transfer data
quickly between a single application and the virtual Ethernet port, partially
reducing the time needed to send a packet [21]. This way, part of the high-
level processing required on the kernel side can be skipped, leaving the kernel
the only burden of forwarding raw Ethernet frames from an Ethernet port to
another one, at the expense of handling upper networking stack layers (UDP, IP,
etc.) inside the user-space application itself. For this purpose, some efficient user-
space implementations of the network stack exist [13,26]. Finally, applications
using raw sockets require exclusive access to the virtual network interface, pre-
venting other applications in the same virtualized environment to access it; this
is not a relevant problem in most NFV scenarios, since each container usually
encapsulates exactly one VNF application.

Another solution is to change the linux-bridge component into another in-
kernel software switch that is more optimized for the traffic expected from the
VNFs. A representative example of this solution is Open vSwitch (OVS) [18], a
flexible general-purpose virtual switch implemented as a kernel module focused



A Framework for Comparative Evaluation 63

on high-performance scenarios. The implementation of OVS is optimized to han-
dle traffic generated by virtualized environments, employing caching techniques
throughout its implementation, especially in its packet classifier.

Another advantage of using a replacement for linux-bridge inside the kernel
is that VNF applications do not need to be rewritten or customized for different
sets of APIs or system calls. However, there are situations in which this app-
roach cannot achieve the required performance levels. If we analyze the overhead
required for UDP or raw sockets, about 50% of total processing time is spent
on the system calls [21]. This consideration indicates that send(), recv(), and
similar APIs are not efficient mechanisms to exchange data between the user-
space application and the kernel. This consideration can lead to two distinct
approaches to tackle this problem: (i) redesign the way user-space applications
interact and exchange data with the Linux kernel itself; (ii) bypass the Linux
kernel entirely and build new APIs and communication mechanisms in user-
space, so that there is no need to pay the cost of executing a system call at all.
The former is the approach taken by Netmap, while the latter is the one of many
solutions that rely on kernel bypass techniques described in Sect. 2.3.

Netmap [22] is a networking framework for high-performance I/O developed for
FreeBSD and Linux. Netmap has a custom APIs allowing applications to send
and receive multiple packets per system call, without any need for data copies
between user and kernel space2. Netmap achieves high performance removing
three main packet processing costs [21], namely system call overheads (amortized
over large packet bursts), per-packet dynamic memory allocation (pre-allocating
fixed-size packet buffers and descriptors during interfaces initialization phase),
and expensive data copies (providing user-space applications direct access to
in-kernel packet buffers). These features are provided by leveraging standard
memory mapping and protection mechanisms for device registers and other ker-
nel memory areas to enforce protection among processes.

FreeBSD already includes Netmap kernel support by default since version 11,
while Netmap can be installed on Linux by patching a set of standard NIC drivers
and loading some additional custom modules3. The driver patches introduce a
new mode for the various network device drivers in the Linux kernel, called
Netmap mode. Unlike the NIC default operating mode, in which packets are
exchanged from and to each NIC through the standard kernel’s networking stack,
devices in Netmap mode no longer communicate with the default networking
stack. Rather, their ring buffers are connected to Netmap-defined ring buffers,
implemented in a shared memory area. Netmap data structures provide device-
independent yet efficient access to data, providing a representation that closely
resembles NICs’ typical ring-based internal structures [21].

An application that wants to leverage Netmap features can either use a
modified version of libpcap [20], which supports network devices in Netmap
mode, or directly use Netmap’s custom API. In the latter case, the application

2 However, data copies across multiple processes are still required for security reasons,
especially when interacting components do not trust each other, like VNFs.

3 https://github.com/luigirizzo/netmap.

https://github.com/luigirizzo/netmap


64 G. Ara et al.

first obtains a reference to Netmap’s in-kernel data structures from user-space,
including packet buffers; it can then start filling them with packets to send or
consuming the received packets. Synchronization between user and kernel space
is achieved using either blocking system calls (using either select() or poll()
to send or receive packets), or non-blocking ones (using ioctl() for both send-
ing and receiving operations). The non-blocking alternative checks if there are
empty packet buffers for new outgoing packets (for send operations) or if there
are packets ready to be processed (for receiving ones) [22].

Notice that, contrary to traditional sendmsg()/recvmsg() and similar sys-
tem calls, Netmap uses system calls only as synchronization mechanisms, no
data copies are issued between user and kernel space during the execution of
each system call. Also, Netmap provides other features to achieve high perfor-
mance for both local and remote communications, including support for multiple
hardware queues, and zero-copy data transfer with supported interfaces [22].

2.3 Inter-container Communications with Kernel Bypass

Significant performance improvements over traditional networking between con-
tainers can be achieved also bypassing the kernel entirely. This removes the
costs associated with system calls, context switches and unneeded data copies as
much as possible. Various I/O frameworks undertake such approach, recurring
to a set of kernel bypassing techniques to exchange batches of packets among
applications without requiring a single system call. Typically, they require using
different kinds of virtualized or para-virtualized network interfaces that can be
managed from the user-space.

One notable example of these kinds of ports is introduced by the virtio stan-
dard [24]: it defines a new kind of para-virtualized ports which rely on shared
memory to achieve high-performance networking among applications running
on the same host (even across containers), a fairly common situation in NFV
scenarios. These interfaces expose “virtual queues” for incoming/outgoing pack-
ets that can be shared among different guests on the same hosts or connected
to software implementations of network switches, allowing the implementation
of efficient host-to-guest and guest-to-guest communications. While virtio inter-
faces are typically implemented by hypervisors (e.g. QEMU, KVM), a user-space
implementation of the virtio specification, called vhost-user, has been defined.

Notice that while virtio ports can effectively improve significantly same-
host communication performance with respect to fully virtualized Ethernet
ports, they cannot be used to directly access the physical network without
any user-space software implementation of a network switch, which is neces-
sary to achieve both dynamic and flexible communications among independently
deployed VNFs.

Data Plane Development Kit (DPDK)4 is an open source framework for
fast packet processing implemented entirely in user-space, characterized by a

4 https://www.dpdk.org/.

https://www.dpdk.org/


A Framework for Comparative Evaluation 65

high portability across multiple platforms. Initially developed by Intel for its
own family of network devices, it now provides a flexible high-level program-
ming abstraction, called Environment Abstraction Layer (EAL) [1], that pro-
vides applications an efficient access point to low-level resources from user-space
without depending on specific hardware devices. Data Plane Development Kit
(DPDK) uses various techniques to reduce the gap between applications and
network interfaces, including non-blocking access to packet rings, batch packet
transfers between memory and interfaces, and the use of resident huge pages of
memory to hold memory buffers.

Other than several physical interfaces from multiple vendors, DPDK sup-
ports virtio-based networking via its own implementation of vhost-user inter-
faces. Hence, DPDK APIs can be used to exchange data efficiently both locally
and with applications residing on remote hosts, in complete transparency for
the user applications: for local communications, vhost-user ports can be used,
while for remote ones the efficient user-space implementation of real Ethernet
device drivers provided by DPDK can be leveraged. For this reason, DPDK has
become extremely popular over the past few years to develop high-performance
networking applications.

2.4 High-Performance Switching Among Containers

High-performance virtual networking infrastructures can be implemented by
employing a combination of software and/or hardware tools. There are essen-
tially three main ways to achieve this goal: (i) by assigning each container a
virtual Ethernet port and connecting each of port to an efficient implementation
of an in-kernel software switch (Fig. 1a); (ii) by assigning each container a virtio
port, using vhost-user to bypass the kernel, and then connect each port to a
software implementation of a virtual switch running in user-space on the same
host (Fig. 1b); (iii) by leveraging special capabilities of certain NIC devices that
allow concurrent access from multiple applications and that can be accessed in
user-space by using DPDK drivers (Fig. 1c). The virtual switch instance used
on each host (either software or hardware) is then connected to the physical
network via the actual NIC interface present on the host.

Many software implementations of L2/L3 switches are available, each imple-
menting their own packet processing logic responsible for packet forwarding.
Some of them can be used in combination with DPDK, Netmap or other net-
working frameworks to improve the performance over standard networking APIs.
For these reasons, performance may differ significantly across implementations.

A common characteristic of most software virtual switches is a non-negligible
amount of processing power required to achieve very high network performance.
On the other hand, special NIC devices that support the SR-IOV specification
allow traffic offloading to a hardware switch embedded in the NIC itself, which
applications can access concurrently without interfering with each other.

Below, we briefly describe the most common software virtual switches in the
NFV industrial practice, and the characteristics of network devices compliant
with the SR-IOV specification.



66 G. Ara et al.

VALE [23] is an implementation of an efficient virtual Ethernet switch that
can be used instead of the default host networking stack to connect applications
that use ports in Netmap mode on the same host or to connect virtual Netmap
ports with the physical NIC present on the host. In principle, VALE acts like a
traditional L2 learning switch, associating each port with a list of L2 addresses by
inspecting the source field of each incoming Ethernet frame. VALE is specialized
to manage Netmap’s ring buffers and it implements a multi-stage forwarding
process that leverages packet batching and cache prefetching instructions to
speed up memory accesses. While it does not support zero-copy of data from
one port to another, even on the same host, for isolation purposes between
different applications [23], it does not require any data copy between user and
kernel space (thanks to Netmap API design).
DPDK Basic Forwarding Sample Application5 is a sample application
provided by DPDK that can be used to connect DPDK-compatible ports, either
virtual or physical, in pairs: this means that each application using a given port
can only exchange packets with a corresponding port chosen during system ini-
tialization. For this reason, this software does not perform any packet processing
operation, hence it cannot be used in real use-case scenarios.
Open vSwitch (OVS)6 is an open source virtual switch for general-purpose
usage with enhanced flexibility thanks to its compatibility with the OpenFlow
protocol [18]. Recently, OVS has been updated to support DPDK and virtio-
based ports, which accelerated considerably packet forwarding operations by
performing them in user-space rather than within a kernel module [2]. This is
the preferred solution when the focus is on data-plane performance, rather than
deploying OVS as an alternative to the default network stack inside the Linux
kernel (see Sect. 2.2).
FD.io Vector Packet Processing (VPP)7 is an extensible framework for
virtual switching released by the Linux Foundation Fast Data Project (FD.io).
Since it is developed on top of DPDK, it can run on various architectures and
it can be deployed in VMs, containers or bare metal environments. It uses Cisco
VPP that processes packets in batches, improving the performance thanks to
the better exploitation of instruction and data cache locality [5].
Snabb8 is a packet processing framework that can be used to provide network-
ing functionality in user-space. It allows for programming arbitrary packet pro-
cessing flows [17] by connecting functional blocks in a Directed Acyclic Graph
(DAG).

While not being based on DPDK, it has its own implementation of virtio and
some NIC drivers in user-space, which can be included in the DAG.

Single-Root I/O Virtualization (SR-IOV) [8] is a specification that allows
a single NIC device to appear as multiple PCIe devices, called Virtual Functions

5 https://doc.dpdk.org/guides/sample app ug/skeleton.html.
6 https://www.openvswitch.org.
7 https://fd.io/.
8 https://github.com/snabbco/snabb.

https://doc.dpdk.org/guides/sample_app_ug/skeleton.html
https://www.openvswitch.org
https://fd.io/
https://github.com/snabbco/snabb


A Framework for Comparative Evaluation 67

(VFs), that can be independently assigned to VMs or containers and move data
through dedicated buffers within the device.

VMs and containers can directly access dedicated VFs and leverage the L2
hardware switch embedded in the NIC for either local or remote communications
(Fig. 1c).

Using DPDK APIs, applications within containers can access the dedicated
VFs bypassing the Linux kernel, removing the need of any software switch run-
ning on the host; however, a DPDK daemon is needed on the host to manage
the VFs.

3 Proposed Framework

This section presents the framework we realized for the purpose of evaluating and
comparing the performance and efficiency of different virtual networking solu-
tions. The framework can be easily installed and configured on any desired num-
ber of interconnected general-purpose servers running an Ubuntu-based Linux
distribution; it can be used to instantiate and deploy a number of OS contain-
ers, each running a custom high-performance benchmarking application. This
application, also developed for this framework, serves the dual purpose to gen-
erate/consume synthetic network traffic, simulating real NFV applications, and
to collect statistics to evaluate system performance in the given configuration.

The purpose of this framework is to carry out a number of experiments from
multiple points of view, depending on the investigation focus, while varying
testing parameters (e.g. packet size, sending rate, etc.) and system configura-
tion. Each test defines which networking solution is to be used to interconnect
the benchmarking applications, how many instances for each machine should be
instantiated, and what are the characteristics of the network traffic that should
be generated. After each individual distributed test is done, the framework col-
lects and stores the system performance measured by each benchmarking appli-
cation and moves on to the next configuration in the list. This way, multiple
tests can be performed consecutively, without any additional user intervention.
When all tests are finished, a summary of the collected statistics is presented to
the user.

The software is open-source and it is freely available on GitHub, under a
GPLv3 license, at: https://github.com/gabrieleara/nfv-testperf . It can be con-
veniently extended by researchers or practitioners, should they need to write
further customized testing applications. Figure 2 depicts the software architec-
ture of the framework, which includes a number of software tools, both readily
available or custom-made, and Bash scripts. The latter ones are used to install
system dependencies, configure and customize installation, set up and run per-
formance evaluations, and collect statistic data.

The framework dependencies include the DPDK framework (including its
Basic Forwarding Sample Application), Netmap (and its own virtual switch,
VALE), and the other user-space virtual switches described in Sect. 2.4: the
user-space implementation of OVS (compiled with DPDK support), VPP, and

https://github.com/gabrieleara/nfv-testperf


68 G. Ara et al.

Benchmarking Applications Stack

DPDK

DPDK Environment
Abstraction Library

DPDK
VIRTIO
Driver

DPDK
Device
Drivers

User Space

Kernel Space

Apps

Sender Receiver Client Server

Logging Data Generation / ConsumptionAPI Abstraction

POSIX API Netmap API

Linux Kernel
Networking Stack

Linux NIC
Device Drivers

Netmap
Device Drivers

Hardware

Software Tools

System 
Setup 
Tools

Deployment 
Tools

Post-
Processing 

Tools

Test 
Setup 
Tools

Fast Networking 
Frameworks

OVS VPP

DPDK Basic Forwarding 
Application

Snabb Netmap + 
VALE

Fig. 2. Main elements of the proposed framework. Adapted from [4].

Snabb. Each virtual switch is configured to act as a simple learning L2 switch,
with the only exception represented by the DPDK Basic Forwarding Sample
Application, which does not have this functionality. In addition, OVS, VPP,
and VALE can be connected to physical Ethernet ports to perform tests for
inter-machine communications.

Figure 2 shows the internal structure of the custom benchmarking applica-
tion included in the framework. This can be configured to act either as traffic
generator and/or consumer (depending on the kind of VNF application that is
emulated) to evaluate system performance from the following points of view:

Throughput: Many VNFs generate or consume huge volumes of network traffic
per second: for this reason, it is of utmost importance to evaluate the maximum
forwarding performance provided by each networking solution, varying system
parameters, in relationship with the required computational resources. For this
purpose, the benchmarking application can be configured to act as a pure sender
or pure receiver application, to generate/consume unidirectional traffic (from
each sender to a designated receiver application).

Latency: In general, in NFV infrastructures it is crucial to strive for the mini-
mum latency possible for individual interactions, in order to reduce the end-to-
end latency between components across long service chains. For this purpose, a
client/server application pair is used to generate bidirectional traffic to evaluate
the average round-trip latency for each packet when multiple packets are trans-
mitted in bursts over the virtual network infrastructure. To do so, the server
application will send back each packet it receives to its corresponding client.

Scalability: Evaluations from this point of view are orthogonal with respect
of the two previous dimensions, in particular with respect to throughput: since



A Framework for Comparative Evaluation 69

full utilization of a computing infrastructure is achieved only when multiple
VNFs are deployed on each host, it is extremely important to evaluate how the
networking performance of multiple concurrent applications are affected when
increasing the number of applications deployed on the each host. For this pur-
pose there are no dedicated applications: multiple instances of each designated
application can be deployed concurrently to evaluate how that affects global
system performance.

The benchmarking applications are implemented in C and they are built over
a custom API that masks the differences between POSIX, DPDK, or Netmap
frameworks; this way, they can be used to evaluate system performance using
each of the approaches described in Sect. 2 to realize the virtual network infras-
tructure. When POSIX APIs are used to exchange packets, raw sockets can also
be used rather than regular UDP sockets to bypass partially the Linux network-
ing stack, building Ethernet, IP and UDP packet headers in user-space.

Each application emulates a specific kind of VNF application, namely a
sender, a receiver, a server, or a client application. In each case, the application
accepts a number of parameters that determine the kind of traffic that is gen-
erated/consumed, including the sending/receiving rate, packet size, burst size,
etc. To maximize application performance, the applications are developed to use
always non-blocking APIs and measurements of elapsed time are performed by
checking the TSC register instead of less precise timers provided by Linux APIs.

During each test, each application is deployed within a LXC container on the
targeted machines and automatically connected to the other designated applica-
tion in the pair, according to the provided configuration. The Linux distribution
that is used to realize each container is based on a simple rootfs built from a basic
BusyBox and it contains only the necessary resources to run the benchmarking
applications. Depending on the networking solution selected for the current test,
the framework takes care of all the setup necessary to interconnect the deployed
applications with the desired networking technology, being it linux-bridge, VALE,
another software-based virtual switch (using virtio and vhost-user ports), or a
SR-IOV Ethernet adapter; again, each scenario is depicted in Fig. 1. In any case,
deployed applications use polling to exchange network traffic over the selected
ports. For tests involving multiple hosts, only OVS, VPP, or VALE can be used
among software-based virtual switches to interconnect the benchmarking appli-
cations; otherwise, it is possible to assign to each container a dedicated VF and
leverage the embedded hardware switch in the SR-IOV network card to forward
traffic from one host to another.

The proposed framework can be easily extended to include more low-level
networking frameworks, alongside DPDK and Netmap’s APIs, or more virtual
switching solutions that can be used to interconnect the containerized applica-
tions. From this perspective, the inclusion of other virtio-based virtual switches
is straightforward, and it does not require any modification of the existing test
applications. In contrast, other low-level networking frameworks not considered
in this work that rely on custom port type/programming paradigms may require
the extension of the API abstraction layer to adapt it to the new low-level com-



70 G. Ara et al.

ponents. Other high-level testing applications generating or consuming differ-
ent types of synthetic workloads can also be easily introduced on top of the
existing API. Further details about the framework’s extensibility can be found
at https://github.com/gabrieleara/nfv-testperf/wiki/Extending.

4 Experimental Results

This section reports experimental results obtained with the framework just intro-
duced above. The goal of the experiments is to test the functionality of the
framework and compare the performance of the various virtual switching solu-
tions described in this paper.

We performed all experiments on two identical hosts: the first has been used
for all local inter-container communications tests, while both hosts have been
used for multi-host communication tests (using containers as well). The two
hosts are two Dell PowerEdge R630 V4 servers, each equipped with two Intel®

Xeon® E5-2640 v4 CPUs at 2.40 GHz, 64 GB of RAM, and an Intel® X710 DA2
Ethernet Controller for 10 GbE SFP+ (used in SR-IOV experiments and multi-
host scenarios). The two Ethernet controllers have been connected directly with
a 10 Gigabit Ethernet cable. Both hosts are configured with Ubuntu 18.04.3 LTS,
Linux kernel version 4.15.0-54, DPDK version 19.05, OVS version 2.11.1, Snabb
version 2019.01, VPP version 19.08, and Netmap for Linux (September 2020). To
maximize results reproducibility, the framework carries out each test disabling
CPU frequency scaling (governor set to performance and Turbo Boost disabled).
Finally, the various components of the framework have been configured to avoid
using hyperthreads simultaneously.

4.1 Testing Parameters

The framework’s configuration depends on the parameters used to instantiate the
containers containing the benchmarking applications, set up the virtual network,

Table 1. List of parameters used to run performance tests with the framework.
Adapted from [4].

Parameter Symbol Description

Test dimension D The test evaluates throughput or latency performance

Hosts used L The test performs only communications on a single host

(shown as “local”) or between different hosts (“remote”)

Containers set S The number of container pairs deployed on the host for the

test duration; this is expressed as “NvsN”—e.g. “1vs1”

means that there are two containers in a pair, while “4vs4”

means four pairs of containers are deployed

Virtual switch V The virtual switch used to connect the containers; can be

one among linux-bridge, basicfwd (for the Basic

Forwarding Sample Application), ovs, snabb, sriov, vpp,

vale

Packet size P The size of each packet, in bytes; includes the content of

the whole Ethernet frame

Sending rate R The desired packet sending/receiving rate, expressed in

packets per second

Burst size B The number of packets that are grouped in each burst

https://github.com/gabrieleara/nfv-testperf/wiki/Extending


A Framework for Comparative Evaluation 71

Host

Container 1

Sender

Container 2

Receiver
Switch

(a)

Host BHost A

Switch Switch

Container 1

Sender

Container 2

Receiver

(d)

Host

Switch

Container 5

Sender /
Client

Container 6

Receiver / 
Server

Container 3

Sender /
Client

Container 4

Receiver / 
Server

Container 1

Sender

Container 2

Receiver

(b)

Host BHost A

Switch Switch

Container 1

Sender

Container 2

Receiver / 
Server

Container 1

Sender

Container 1

Sender

Container 2

Receiver / 
Server

Container 2

Receiver

(e)

Host

Container 1

Client

Container 2

ServerSwitch

(c)

Host BHost A

Switch Switch

Container 1

Client

Container 2

Server

(f)

Fig. 3. Different testing scenarios used for our evaluations. In particular, (a), (b), and
(c) refer to single-host scenarios, while (d), (e), and (f) to scenarios that consider
multiple hosts. From [4].

and instruct the applications to generate traffic with specific characteristics. The
number of test cases is significant; hence, we show only relevant results for each
different perspective.

To identify each test, we use the following notation, where a tuple uniquely
identifies each test in the following form:

(D, L, S, V, P, R, B)

Table 1 describes each parameter in detail. Then, referring to the results of mul-
tiple tests at the same time, we omit from this notation the parameters that are
free to vary within a predefined set of values. For example, to show some tests
performed while varying the sending rate, the R parameter may not be included
in the tuple.

For each test, the framework automatically deploys the applications on one
or both hosts, grouped in pairs (i.e. sender/receiver or client/server), and it runs
the desired test for a fixed amount of time. The scenarios that we considered
in our experiments are summarized in Fig. 3. Each test uses only a fixed set of
parameters and runs for 1 minute. Upon completion, we compute the average



72 G. Ara et al.

value of the desired metric (either throughput or latency), after discarding a
certain number of values from the beginning and the end of the experiment;
the discarded values are related to initial warm-up and shutdown phases. The
resulting statistics are therefore calculated only over values related to steady-
state conditions of the system.

4.2 Kernel-Based Networking

Table 2. From [4]. Maximum throughput achieved for various socket-based solutions:
(D = throughput, L = local, S = 1vs1, V = linux-bridge, P = 64, R = 1M, B = 64).

Technique Max throughput (kpps)

UDP sockets using send/recv 338

UDP sockets using sendmmsg/recvmmsg 409

Raw sockets using send/recv 360

Raw sockets using sendmmsg/recvmmsg 440

In this section, we show the performance achieved using standard POSIX
system calls and Linux kernel’s networking stack. Table 2 reports the maximum
throughput achieved using POSIX socket APIs and linux-bridge to interconnect a
pair of sender and receiver application, both deployed on the same host (Fig. 3a).
With this configuration, the maximum throughput is achieved when most of the
networking stack is bypassed, using raw sockets, with a maximum throughput
of 0.440 Mpps. As we will show in the following sections, using Netmap or tech-
niques that entirely bypass the Linux kernel, it is possible to achieve well over
2 Mpps in similar set-ups. Given their inferior performance compared to the other
frameworks, in all the results that will follow standard POSIX system calls and
linux-bridge will not be considered anymore.

4.3 Throughput Evaluations

This section evaluates throughput performance between two applications in a
single pair, deployed either on the same host or multiple directly connected
machines, varying the desired sending rate, packet, and burst sizes using high-
performance networking frameworks. In all our experiments, we noticed that
varying the burst size from 32 to 256 packets per burst did not affect throughput
performance; thus, we will always refer to the case of 32 packets per burst in
further reasoning, if not explicitly indicated otherwise. In all our experiments,
we considered 1 Gbps exactly equal to 109 bits per second.

Same-Host Throughput Results. First, we deployed a single pair of sender
and receiver applications on a single host (Fig. 3a), and we connected them each
time with one among the various high-performance frameworks available:

(D = throughput, L = local, S = 1vs1)



A Framework for Comparative Evaluation 73

Fig. 4. Throughput performance obtained varying system configuration and virtual
switch used to connect sender/receiver applications deployed in LXC containers.

In these tests, we varied the packet sending rate from 1 to 20 Mpps and the
packet size from 64 to 1500 bytes. The two applications are configured to generate
and consume each exchanged packet’s content, respectively, simulating an actual
application’s behavior.

Figure 4a shows that each networking solution matches the desired through-
put in each of our tests until a certain plateau is reached, which varies depending
on the capabilities of each virtual port/switch combination. In our evaluations,



74 G. Ara et al.

this maximum throughput strongly depends on the packet size; thus, from now
on, we consider only the maximum achievable throughput for each networking
framework when the size of each packet varies in our desired range.

The maximum receiving rates achieved in our tests between two containers
on the same host are shown in Figs. 4b and 4c. Each plot shows the achieved
receiving rate (y-axis), expressed respectively in Mpps and Gbps, as a function
of the size of each packet (x-axis), for which a logarithmic scale has been used. In
both figures, the behavior shown by each solution is similar: with an increase in
the packet size, the throughput in terms of Mpps decreases progressively, while
in terms of Gbps it grows logarithmically with the packet size (Fig. 4c). From
these results, we can see that while the maximum throughput in terms of Mpps
is achieved with the smallest of the selected packet sizes (64 bytes), in terms of
Gbps it is better to use the biggest packet size (1500 bytes).

From both figures, it is clear that the maximum performance is attained by
offloading network traffic to the SR-IOV device, exploiting its embedded hard-
ware switch. Instead, the second-best solution varies depending on the packet size
selected: while for smaller packet sizes both the Basic Forwarding Sample Appli-
cation and VPP dominate the other solutions, as the packet size increases over
128 bytes, VALE outperforms them both, almost resulting en-par with SR-IOV
offloading. The overall high performance of the Basic Forwarding Sample Appli-
cation is expected since it does not implement any actual switching logic. The
minimal performance gap between VPP and the latter solution indicates that
the batch packet processing features that characterize VPP can effectively dis-
tribute packet processing overheads among incoming bursts of packets. Finally,
OVS and Snabb, which lack similar optimizations, obtain inferior performance
with respect to the other solutions. Comparing its performance with other eval-
uations present in literature that used Snabb only to connect directly two ports
without a switching component in-between [3], we were able to conclude that its
internal L2 switching component represents the major bottleneck for Snabb.

In general, these figures show that the efficiency of each port/switch pair has
a more significant impact when smaller packets are exchanged over the virtual
network, and hence a higher number of packets is processed by each virtual
switch: the performance gap among the various solutions is very small for packets
whose size is 1 kB and beyond. From this, we can conclude that for bigger packet
sizes, the system’s major bottleneck becomes the capability of the CPU and the
memory subsystem to move data from one CPU core to another, which is mostly
equivalent for any implementation. Given also the slightly superior performance
achieved by SR-IOV, especially for smaller packet sizes, we also concluded that
its hardware switch is more efficient at moving a large number of packets between
CPU cores than the software implementations that we tested.

Note that the authors of VALE reported a performance peak of 27 Mpps
in [14], however the sender/receiver application they used is simpler than ours,
that scans through every byte of sent and received packets, calculating a very
simple CRC, for the purpose of emulating better the effect on the overall exper-
iment of possible limits arising from the limited memory bandwidth available.



A Framework for Comparative Evaluation 75

Therefore, the performance attainable with our framework is expected to be
lower, albeit more representative of what would be achievable by a realistic
application that has to prepare the packets to send and process the received
ones. Additionally, in our experimentation, a non-particularly fast CPU was
used, clocked at 2.4 GHz, while in the experiments in [14] a 4 GHz CPU was
used. Finally, they employed VMs rather than OS containers to perform the
experiment, In that configuration, Netmap applications can leverage some opti-
mizations that forward system calls to a pool of threads running on the host
machine [15], which may lead to increased performance compared to bare-metal
deployments.

Multiple Hosts. We repeated these evaluations deploying the receiver applica-
tion on a separate host (Fig. 3d), using the only virtual switches able to forward
traffic between multiple hosts9:

(D = throughput, L = remote, S = 1vs1, V ∈ {ovs, sriov, vpp, vale})

Figure 4d shows the maximum receiving rates achieved for a burst size of
32 packets. In this scenario, results depend on the exchanged packets’ size: for
smaller packet sizes, the dominating bottleneck is still represented by the CPU
for all software-based virtual switches, while for bigger packets, the Ethernet line
rate limits the total throughput achievable by any virtual switch to only 10 Gbps.
From these results, we concluded that when the expected traffic is characterized
by relatively small packet sizes (up to 256 bytes), deploying a component on a
directly connected host does not impact system performance negatively when
using OVS, VPP, or VALE. Also, we noticed that in this scenario, there is
no clear best virtual switch with respect to the others: while SR-IOV is more
efficient for smaller packet sizes, software-based virtual switches perform better
for bigger ones.

4.4 Throughput Scalability Evaluations

The scalability of system performance is a critical factor in NFV since the
full utilization of system resources can be achieved only by deploying multiple
components on each host. That is why we repeated all our throughput evalu-
ations deploying multiple application pairs on the same host (Fig. 3b), up to 4
sender/receiver pairs:

(D = throughput, L = local, S ∈ {1vs1, 2vs2, 4vs4})

From our previous evaluations, we highlighted that the throughput capa-
bility of most networking solutions varies greatly depending on the size of the
packets exchanged over the local network. For this reason, we show in Figs. 4e
and 4f the relationship between the number of application pairs deployed simul-
taneously and the maximum total throughput achieved (i.e. the maximum sum
9 The Basic Forwarding Sample Application does not implement any switching logic,

while Snabb was not compatible with our selected SR-IOV Ethernet controller.



76 G. Ara et al.

of throughput values registered simultaneously by all sender/receiver pairs) for
packets of 64 and 1500 bytes respectively.

Figure 4e highlights a significant difference between VALE and the other
network solutions considered in this work. While most virtual switches do not
achieve higher total throughput when increasing the number of application pairs
transmitting 64 bytes per packet, VALE’s throughput increases almost linearly
with the number of application pairs. Most virtual switches have a fixed amount
of processing power at their disposal, distributed among all the packet flows
traversing them10. On the other hand, VALE operates directly inside the Linux
kernel: each sender process is responsible for forwarding its packets to their
destination. In a scenario where N processes send packets simultaneously over
the local network, VALE can use virtually N times the processing power than
with a single sender. The effectiveness of this approach is evident when the
scalability of the system is taken into account, albeit it does consume part of
the processing power of each process to do packet processing operations. The
resulting performance is only penalized when only one packet flow is present on
the system (1vs1), while the other software/hardware virtual switches cannot
keep up once more network flows are added.

The situation is slightly different when we increase the packet size, up to
1500 bytes per packet. Figure 4f shows that for bigger packets, SR-IOV also shows
a similar almost-linear behavior with the increase of the number of participants:
in this case, VALE and SR-IOV can sustain 4 senders with only a per-packet
performance drop of about 0% and 17.8%, respectively. On the contrary, virtio-
based switches can still only distribute the same amount of resources over a more
significant number of network flows.

From these results, we concluded that the number of packets mostly repre-
sents the major limitation of our SR-IOV NIC exchanged on the local network.
In contrast, the most significant limitation of virtio-based switches is the capa-
bility of the CPU to move data from one application to another, which depends
on the overall amount of bytes exchanged. Finally, VALE is affected by the same
limitation of the other software-based virtual switches, but thanks to its dis-
tributed implementation it is possible to sustain higher traffic volumes without
consuming an unreasonable amount of processing power (see also Sect. 4.6 for
more details about performance and processing power).

Repeating scalability evaluations on multiple hosts (L = remote), we de-
ployed up to 8 application pairs (S = 8vs8) transmitting data from one host
to the other one (Fig. 3e). Figures 4g and 4h show that the selected packet size
strongly influences the outcome. Similarly to single-flow remote test results, the
system’s major bottleneck is represented by the limited throughput of the Ether-
net line rate when bigger packets are used (256 bytes and above). When exchang-
ing smaller packets, the CPU becomes unable to efficiently move big numbers

10 This limitation corresponds to the processing power reserved for each worker thread
they spawn for software virtual switches, while for SR-IOV devices, it is an intrinsic
characteristic of their hardware implementation.



A Framework for Comparative Evaluation 77

Fig. 5. Average round-trip latency obtained varying system configuration and virtual
switch used to connect client/server applications deployed in LXC containers. Plots on
the left refer to tests performed on a single-host, while plots on the right involve two
separate hosts.

of packets from and to the NIC, especially when software-based solutions are
adopted.

4.5 Latency Performance Evaluations

For the latency dimension, we evaluated the round-trip latency between a pair of
client and server applications, depending on the network traffic and the network
infrastructure, to estimate the per-packet processing overhead introduced by
each different solution. In particular, our focus is to evaluate how each technology
distributes its packet processing costs over multiple packets when increasing the
number of packets in each burst. To carry out these experiments, we deployed a
single pair (S = 1vs1) of client/server applications on either a single (L = local)
or multiple hosts (L = remote). In each test, benchmark applications use a



78 G. Ara et al.

relatively low packet sending rate, enough so that there can be no interference
between the processing of a burst of packets and the following one.

First, we deployed both the client and the server on the same host (Fig. 3c),
varying the burst size from 4 to 128 packets per burst and the packet size from
64 to 1500 bytes:

(D = latency, L = local, S = 1vs1, R = 1000)

In all our tests, the performance that we registered for Snabb was consider-
ably worse than the ones achieved by other solutions; for example, the minimum
average latency registered for Snabb is about 64µs, even when other solutions
in similar working conditions averaged well under 40µs. Since this behavior is
repeated in all our tests, regardless of which network parameters are applied,
Snabb will not be discussed further.

Figures 5a to 5c show that SR-IOV is the only solution that cannot provide
single-digit microsecond round-trip latency even for small packet and burst sizes,
achieving at best about 12.4µs. Increasing the burst size to 32 packets per burst
improves its performance, enabling SR-IOV to outperform all virtio-based virtual
switches, although VALE remains the most lightweight solution. From these
results, we inferred that the variation of the burst size has a lower influence
on the SR-IOV and VALE performance; for this reason, they are both suitable
solutions that can be used with more bursty traffic.

We repeated the same evaluations by deploying the server application on a
separate host (L = remote, Fig. 3f). In this new scenario, SR-IOV unsurprisingly
always outperforms OVS and VPP, as shown in Figs. 5d to 5f; in fact, software-
based virtual switches introduce two new levels of indirection with respect to
directly offloading all network traffic to the NIC: the two software instances, each
running in their respective hosts, perform additional packet processing opera-
tions that contribute to the overall latency of each packet exchanged to the ones
already performed in hardware by the very same SR-IOV device. On the other
hand, VALE’s performance is less subject to change when varying packet or
burst sizes, achieving consistently around 85µs round-trip latency on average.

4.6 Performance and Computational Requirements

Finally, we compared the cost of these high-performance networking solutions in
terms of computational power required. For this purpose, during our throughput
evaluations we configured the sender and receiver applications to measure the
consumed computational power, by comparing the CPU time executed by the
process against the actual time.

For most of these scenarios the overall CPU utilization can be obtained
by some simple considerations. First of all, both DPDK and Netmap achieve
maximum performance when applications continuously poll the network driver.
For this reason, each sender/receiver application consumes exactly 100% of the
CPU time when running at maximum capacity. Software-based user-space vir-
tual switches (i.e. DPDK Basic Forwarding Sample Application, OVS, Snabb,



A Framework for Comparative Evaluation 79

Fig. 6. Total CPU utilization vs maximum throughput measured varying the number
of network flows and type of virtual switch used to connect sender/receiver applications
deployed in LXC containers.

and VPP) are each implemented as a user-space process which also continuously
polls network drivers for maximum performance. Hence, they each consume an
entire CPU for each worker thread they spawn. On the contrary, SR-IOV and
VALE do not require additional CPUs, albeit for two very different reasons: SR-
IOV does not utilize any CPU at all, since it is an hardware offload solution;
VALE runs inside each sender/receiver process, moving packets whenever an
application executes a system call, as mentioned in Sect. 4.4.

Experimental results confirm these formulations, as shown in Fig. 6. Since
for each of our tests the total CPU utilization for each solution depends only
on the number of participants required by the test (e.g. 1vs1, 2vs2, and so on),
we show only the maximum throughput performance registered during each test
with the associated CPU utilization. It is implicit that given a certain system
configuration, sending a smaller number of packets per second would result in
worse throughput performance, but it would not affect CPU utilization when
polling techniques are used. Figure 6 shows the clear advantage in terms of CPU
costs of SR-IOV and VALE against the other switching technologies: in each
system configuration, they always require one less CPU than the others for local
and two less CPUs for multi-host communications.

It must be noted that most of these solutions support some form of interrupt
coalescing techniques, similarly to the Linux New API (NAPI) [25], to reduce the
overall CPU utilization at the cost of reduced throughput/latency performance.
For example, Netmap API provides blocking access to NICs, allowing processes
to suspend while waiting for the device to be ready again, thus reducing CPU
utilization [22]. DPDK can also be used in combination with interrupts [11], but
before sending or receiving packets the program must switch back to polling
mode. This reduces CPU utilization during idle times, at the cost of greater
latency when interrupts must be disabled to revert to polling mode, when the
first packet of a burst is received.



80 G. Ara et al.

As a final note, both OVS and VPP support multi-threaded packet forward-
ing by spawning multiple worker threads on separate cores and assigning each
worker thread a subset of the virtual switch ports. When using this mode, bench-
marking performance is directly influenced by the placements of the various
applications. If the same worker thread manages multiple sender applications,
performance is the same as shown in Figs. 4e and 4f, at the cost of consuming
additional CPUs if assigning their receivers to other continuously polling worker
threads. On the other hand, when spreading each sender application to a sepa-
rate worker thread, both OVS and VPP can scale the total traffic linearly with
network flows. The placement of receiver applications is entirely irrelevant from
this perspective. However, it must be noted that using this mode has a con-
siderable cost in terms of computational requirements since each worker thread
consumes the totality of a CPU core, imposing a hard limit on the number of
VNFs that can be deployed on a single machine.

5 Related Work

The proliferation of different technologies to exchange packets among applica-
tions deployed in virtualized environments has created the need for new tools
to evaluate virtual switching solutions’ performance with respect to throughput,
latency, and scalability. For this reason, various works in the research litera-
ture addressed the problem of network performance optimization for VMs and
containers, often analyzing the problem from different points of view.

A comparison among standard POSIX sockets and more modern kernel
bypass frameworks like DPDK and Remote Direct Memory Access (RDMA)11

focusing on round-trip latency between two directly connected hosts [11] showed
that both DPDK and RDMA significantly outperform POSIX UDP sockets. In
the study, DPDK and RDMA were the only ones able to achieve single-digit
microsecond latency, with the drawback that applications must continuously
poll the physical devices for incoming packets, leading to high CPU utilization.

Another work [14] compared qualitatively and quantitatively common high-
performance networking setups, including SR-IOV, Snabb, OVS (with DPDK),
and Netmap, measuring throughput and relative CPU utilization when deploy-
ing two VMs on either a single or two multiple directly connected hosts. Their
evaluations concluded that, in their setups, Netmap could reach up to 27 Mpps
(when running on a 4 GHz CPU), outperforming SR-IOV, due to the limited
bandwidth of its hardware switch.

A previous comparison among high-performance networking technologies [10]
analyzed the performance of three different frameworks: DPDK, Netmap, and
PF RING12. The analysis showed that two major bottlenecks may limit network-
ing performance between two hosts: CPU capacity and NIC maximum transfer
rate. Characteristics of network traffic (like packet or burst sizes) can influ-
ence whether one or the other represents the dominating bottleneck: when the
11 http://www.rdmaconsortium.org.
12 https://www.ntop.org/products/packet-capture/pf ring/.

http://www.rdmaconsortium.org
https://www.ntop.org/products/packet-capture/pf_ring/


A Framework for Comparative Evaluation 81

per-packet processing cost is kept low, the NIC maximum transfer rate is what
imposes a cap on performance; on the other hand, as processing cost increases
the CPU becomes increasingly more loaded, until it reaches a maximum packet
processing rate. DPDK achieved the highest throughput in terms of packets per
second, independently from the burst size; on the contrary, Netmap reached its
highest throughput only when at grouping least 128 packets in each burst, and
even then, it could not reach performance similar to DPDK or PF RING.

The authors of a more recent work addressed the scalability of various virtual
switching solutions against the number of VMs deployed on the same host [19],
comparing VPP and OVS against SR-IOV. From their evaluations, they con-
cluded that SR-IOV could sustain a more significant number of VMs with respect
to its software-based counterparts, achieving almost linear throughput scalabil-
ity for the number of VMs. Both OVS and VPP were only able to scale the total
throughput up to a certain plateau, which depended on the number of CPU
resources reserved for each virtual switch: the global resources allocated to each
virtual switch were distributed equally among VMs, with a per-VM performance
degradation that increased with the number of parallel VMs.

The same authors of this paper presented a preliminary work [3] that com-
pared various virtual switching techniques based on kernel bypass for inter-
container communications. That evaluation was limited to techniques that
bypass the Linux kernel and only a single unidirectional packet flow on a single
host. The results indicated that offloading traffic to the SR-IOV interface was
the most suitable among the tested solutions. Another work comparing a much
broader number of test cases and working conditions has also been presented by
the same authors [4], deploying benchmarking applications on either one or mul-
tiple machines and presenting a new set of tools useful to repeat the experiments
in other scenarios conveniently.

This paper constitutes an extension of our prior work [4] just described above.
In this paper, we provided a more in-depth description of high-performance net-
working frameworks, including also Netmap, that does not rely entirely on kernel
bypass mechanisms. We described how the original framework has been extended
to support also Netmap and its virtual switch VALE as suitable inter-container
communication mechanisms. With the new extended framework, we now pro-
vided a broader comparative analysis of the obtained networking performance,
including VALE in our experiments. Finally, we also analyzed the computational
requirements of each of the networking solutions included in the framework,
which was missing from [4].

6 Conclusions and Future Work

This paper presented an extension to a software framework for the comparative
evaluation of virtual networking solutions commonly used in the NFV industrial
practice. With the extended framework, we evaluated the performance and com-
putational demands of interconnecting VNFs, both on a single or multiple hosts.
Results obtained on our reference machine show that SR-IOV or Netmap’s vir-
tual switch, VALE, obtain superior performance against the competition when



82 G. Ara et al.

networking on a single host; this is true not only in terms of throughput, latency,
and scalability of the virtual network but also in terms of the processing power
needed to perform packet forwarding at high rates. For inter-host communica-
tions, the CPU’s limitations or the limited throughput of the underlying physical
layer represent the major bottleneck for each of the tested solutions, at least on
our reference hardware.

In the future, we plan to support additional virtual networking solutions, like
SoftNIC [12] or PF RING, as well as other virtual switches, like FastClick [6]
or BESS [12]. Finally, we plan to implement support for one or more high-
performance networking frameworks to real state-of-the-art NFV applications,
like the ones developed for the OpenAirInterface project [16], and evaluate
the potential performance improvements of these frameworks for real industrial
applications, rather than emulating their behavior.

Acknowledgements. The authors would like to thank professor Giuseppe Lettieri
from the University of Pisa for the timely help provided during the integration of
Netmap in the framework.

References

1. Impressive packet processing performance enables greater workload consolidation.
White Paper, Intel (2012). https://media15.connectedsocialmedia.com/intel/06/
13251/Intel DPDK Packet Processing Workload Consolidation.pdf

2. Open vSwitch enables SDN and NFV transformation. White Paper, Intel
2015. https://networkbuilders.intel.com/docs/open-vswitch-enables-sdn-and-nfv-
transformation-paper.pdf

3. Ara, G., Abeni, L., Cucinotta, T., Vitucci, C.: On the use of kernel bypass mech-
anisms for high-performance inter-container communications. In: Weiland, M.,
Juckeland, G., Alam, S., Jagode, H. (eds.) ISC High Performance 2019. LNCS,
vol. 11887, pp. 1–12. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
34356-9 1

4. Ara, G., Cucinotta, T., Abeni, L., Vitucci, C.: Comparative evaluation of kernel
bypass mechanisms for high-performance inter-container communications. In: Pro-
ceedings of the 10th International Conference on Cloud Computing and Services
Science. SCITEPRESS - Science and Technology Publications (2020)

5. Barach, D., Linguaglossa, L., Marion, D., Pfister, P., Pontarelli, S., Rossi, D.: High-
speed software data plane via vectorized packet processing. IEEE Commun. Mag.
56(12), 97–103 (2018)

6. Barbette, T., Soldani, C., Mathy, L.: Fast userspace packet processing. In: Pro-
ceedings of the Eleventh ACM/IEEE Symposium on Architectures for Networking
and Communications Systems, ANCS 2015, USA, pp. 5–16 (2015)

7. Barik, R.K., Lenka, R.K., Rao, K.R., Ghose, D.: Performance analysis of virtual
machines and containers in cloud computing. In: 2016 International Conference on
Computing, Communication and Automation (ICCCA). IEEE, April 2016

8. Dong, Y., Yang, X., Li, J., Liao, G., Tian, K., Guan, H.: High performance network
virtualization with SR-IOV. J. Parallel Distrib. Comput. 72(11), 1471–1480 (2012)

9. Felter, W., Ferreira, A., Rajamony, R., Rubio, J.: An updated performance compar-
ison of virtual machines and Linux containers. In: IEEE International Symposium
on Performance Analysis of Systems and Software (ISPASS), March 2015

https://media15.connectedsocialmedia.com/intel/06/13251/Intel_DPDK _Packet_Processing_Workload_Consolidation.pdf
https://media15.connectedsocialmedia.com/intel/06/13251/Intel_DPDK _Packet_Processing_Workload_Consolidation.pdf
https://networkbuilders.intel.com/docs/open-vswitch-enables-sdn-and-nfv-transformation-paper.pdf
https://networkbuilders.intel.com/docs/open-vswitch-enables-sdn-and-nfv-transformation-paper.pdf
https://doi.org/10.1007/978-3-030-34356-9_1
https://doi.org/10.1007/978-3-030-34356-9_1


A Framework for Comparative Evaluation 83

10. Gallenmüller, S., Emmerich, P., Wohlfart, F., Raumer, D., Carle, G.: Comparison
of frameworks for high-performance packet IO. In: ACM/IEEE Symposium on
Architectures for Networking and Communications Systems (ANCS), May 2015

11. Géhberger, D., Balla, D., Maliosz, M., Simon, C.: Performance evaluation of low
latency communication alternatives in a containerized cloud environment. In: IEEE
11th International Conference on Cloud Computing (CLOUD), July 2018

12. Han, S., Jang, K., Panda, A., Palkar, S., Han, D., Ratnasamy, S.: SoftNIC: A soft-
ware NIC to augment hardware. Technical Report UCB/EECS-2015-155, EECS
Department, University of California, Berkeley, May 2015

13. Jeong, E., et al.: mTCP: a highly scalable user-level TCP stack for multicore
systems. In: 11th USENIX Symposium on Networked Systems Design and Imple-
mentation, pp. 489–502 (2014)

14. Lettieri, G., Maffione, V., Rizzo, L.: A survey of fast packet I/O technologies for
network function virtualization. In: Kunkel, J.M., Yokota, R., Taufer, M., Shalf,
J. (eds.) ISC High Performance 2017. LNCS, vol. 10524, pp. 579–590. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-67630-2 40

15. Maffione, V., Rizzo, L., Lettieri, G.: Flexible virtual machine networking using
netmap passthrough. In: 2016 IEEE International Symposium on Local and
Metropolitan Area Networks (LANMAN). IEEE, June 2016

16. Nikaein, N., Marina, M.K., Manickam, S., Dawson, A., Knopp, R., Bonnet, C.:
OpenAirInterface. ACM SIGCOMM Comput. Commun. Rev. 44(5), 33–38 (2014)

17. Paolino, M., Nikolaev, N., Fanguede, J., Raho, D.: SnabbSwitch user space virtual
switch benchmark and performance optimization for NFV. In: IEEE Conference on
Network Function Virtualization and Software Defined Network, November 2015

18. Pfaff, B., et al.: The design and implementation of Open vSwitch. In: 12th USENIX
Symposium on Networked Systems Design and Implementation, pp. 117–130 (2015)

19. Pitaev, N., Falkner, M., Leivadeas, A., Lambadaris, I.: Characterizing the perfor-
mance of concurrent virtualized network functions with OVS-DPDK, FD.IO VPP
and SR-IOV. In: Proceedings of the 2018 ACM/SPEC International Conference
on Performance Engineering - ICPE 2018. ACM Press (2018)

20. Rizzo, L.: Netmap: A novel framework for fast packet I/O. In: 2012 USENIX
Annual Technical Conference (USENIX ATC 12), Boston, MA, pp. 101–112.
USENIX Association (2012)

21. Rizzo, L.: Revisiting network I/O APIs: the Netmap framework. Queue 10(1), 30
(2012)

22. Rizzo, L., Landi, M.: Netmap: memory mapped access to network devices. ACM
SIGCOMM Comput. Commun. Rev. 41(4), 422 (2011)

23. Rizzo, L., Lettieri, G.: VALE, a switched ethernet for virtual machines. In: Pro-
ceedings of the 8th International Conference on Emerging Networking Experiments
and Technologies - CoNEXT 2012. ACM Press (2012)

24. Russell, R., Tsirkin, M.S., Huck, C., Moll, P.: Virtual I/O Device (VIRTIO) Version
1.0. Standard, OASIS Specification Committee (2015)

25. Salim, J.H., Olsson, R., Kuznetsov, A.: Beyond Softnet. In: Annual Linux Showcase
& Conference, vol. 5, pp. 18–18 (2001)

26. Yasukata, K., Honda, M., Santry, D., Eggert, L.: StackMap: low-latency networking
with the OS stack and dedicated NICs. In: USENIX Annual Technical Conference
(USENIX ATC 16), Denver, CO, pp. 43–56, June 2016

https://doi.org/10.1007/978-3-319-67630-2_40

	A Framework for Comparative Evaluation of High-Performance Virtualized Networking Mechanisms
	1 Introduction
	1.1 Contributions

	2 Background
	2.1 Kernel-Based Networking and VNFs
	2.2 Bypassing the Kernel's Networking Stack
	2.3 Inter-container Communications with Kernel Bypass
	2.4 High-Performance Switching Among Containers

	3 Proposed Framework
	4 Experimental Results
	4.1 Testing Parameters
	4.2 Kernel-Based Networking
	4.3 Throughput Evaluations
	4.4 Throughput Scalability Evaluations
	4.5 Latency Performance Evaluations
	4.6 Performance and Computational Requirements

	5 Related Work
	6 Conclusions and Future Work
	References




